Wednesday, 8 March 2017

Moving Average Filter Spannweite

Moving Averages: Was sind sie unter den populärsten technischen Indikatoren, gleitende Durchschnitte werden verwendet, um die Richtung des aktuellen Trends zu messen. Jede Art von gleitendem Durchschnitt (üblicherweise in diesem Tutorial als MA geschrieben) ist ein mathematisches Ergebnis, das durch Mittelung einer Anzahl von vergangenen Datenpunkten berechnet wird. Einmal bestimmt, wird der daraus resultierende Durchschnitt dann auf ein Diagramm aufgetragen, um es den Händlern zu ermöglichen, geglättete Daten zu betrachten, anstatt sich auf die alltäglichen Preisschwankungen zu konzentrieren, die allen Finanzmärkten innewohnen. Die einfachste Form eines gleitenden Durchschnitts, die in geeigneter Weise als ein einfacher gleitender Durchschnitt (SMA) bekannt ist, wird berechnet, indem man das arithmetische Mittel eines gegebenen Satzes von Werten annimmt. Zum Beispiel, um einen grundlegenden 10-Tage gleitenden Durchschnitt zu berechnen, würden Sie die Schlusskurse aus den letzten 10 Tagen addieren und dann das Ergebnis mit 10 teilen. In Abbildung 1 ist die Summe der Preise für die letzten 10 Tage (110) Geteilt durch die Anzahl der Tage (10), um den 10-Tage-Durchschnitt zu erreichen. Wenn ein Händler einen 50-tägigen Durchschnitt anstatt sehen möchte, würde die gleiche Art von Berechnung gemacht werden, aber es würde die Preise in den letzten 50 Tagen enthalten. Der daraus resultierende Durchschnitt unter (11) berücksichtigt die letzten 10 Datenpunkte, um den Händlern eine Vorstellung davon zu vermitteln, wie ein Vermögenswert in Bezug auf die letzten 10 Tage festgesetzt wird. Vielleicht fragen Sie sich, warum technische Händler dieses Werkzeug einen gleitenden Durchschnitt nennen und nicht nur ein normales Mittel. Die Antwort ist, dass, wenn neue Werte verfügbar werden, die ältesten Datenpunkte aus dem Set gelöscht werden müssen und neue Datenpunkte kommen müssen, um sie zu ersetzen. Damit wird der Datensatz ständig auf neue Daten übertragen, sobald er verfügbar ist. Diese Berechnungsmethode stellt sicher, dass nur die aktuellen Informationen berücksichtigt werden. In Abbildung 2, sobald der neue Wert von 5 dem Satz hinzugefügt wird, bewegt sich der rote Kasten (der die letzten 10 Datenpunkte repräsentiert) nach rechts und der letzte Wert von 15 wird aus der Berechnung gelöscht. Weil der relativ kleine Wert von 5 den hohen Wert von 15 ersetzt, würden Sie erwarten, dass der Durchschnitt der Datensatzabnahme, was es tut, in diesem Fall von 11 bis 10 zu sehen. Was verschieben die Durchschnitte aussehen Einmal die Werte der MA wurden berechnet, sie werden auf ein Diagramm geplottet und dann verbunden, um eine gleitende durchschnittliche Linie zu erzeugen. Diese geschwungenen Linien sind auf den Charts der technischen Händler üblich, aber wie sie verwendet werden, kann drastisch variieren (mehr dazu später). Wie Sie in Abbildung 3 sehen können, ist es möglich, mehr als einen gleitenden Durchschnitt zu jedem Diagramm hinzuzufügen, indem Sie die Anzahl der in der Berechnung verwendeten Zeiträume anpassen. Diese geschwungenen Linien mögen anfangs ablenkend oder verwirrend erscheinen, aber sie werden sich daran gewöhnt, wie es die Zeit verläuft. Die rote Linie ist einfach der durchschnittliche Preis in den letzten 50 Tagen, während die blaue Linie der durchschnittliche Preis in den letzten 100 Tagen ist. Nun, da Sie verstehen, was ein gleitender Durchschnitt ist und wie es aussieht, führen Sie gut eine andere Art von gleitenden Durchschnitt ein und untersuchen, wie es sich von dem zuvor erwähnten einfachen gleitenden Durchschnitt unterscheidet. Der einfache gleitende Durchschnitt ist bei den Händlern sehr beliebt, aber wie alle technischen Indikatoren hat er seine Kritiker. Viele Einzelpersonen argumentieren, dass die Nützlichkeit des SMA begrenzt ist, weil jeder Punkt in der Datenreihe gleich gewichtet wird, unabhängig davon, wo er in der Sequenz auftritt. Kritiker argumentieren, dass die jüngsten Daten signifikanter sind als die älteren Daten und einen größeren Einfluss auf das Endergebnis haben sollten. Als Reaktion auf diese Kritik begannen die Händler, den jüngsten Daten mehr Gewicht zu verleihen, was seither zur Erfindung von verschiedenen Arten von neuen Durchschnittswerten geführt hat, wobei der populärste der exponentielle gleitende Durchschnitt (EMA) ist. (Für weitere Lesungen siehe Grundlagen der gewichteten gleitenden Mittelwerte und was ist der Unterschied zwischen einer SMA und einer EMA) Exponentieller bewegter Durchschnitt Der exponentielle gleitende Durchschnitt ist eine Art gleitender Durchschnitt, der den jüngsten Preisen mehr Gewicht verleiht, um es besser zu machen Zu neuen Informationen. Lernen der etwas komplizierten Gleichung für die Berechnung einer EMA kann für viele Händler unnötig sein, da fast alle Charting-Pakete die Berechnungen für Sie machen. Jedoch für Sie Mathe-Aussenseiter da draußen, hier ist die EMA-Gleichung: Wenn Sie die Formel verwenden, um den ersten Punkt der EMA zu berechnen, können Sie feststellen, dass es keinen Wert gibt, der als vorherige EMA verwendet werden kann. Dieses kleine Problem kann gelöst werden, indem man die Berechnung mit einem einfachen gleitenden Durchschnitt beginnt und mit der obigen Formel von dort weiter fortfährt. Wir haben Ihnen eine Beispielkalkulationstabelle zur Verfügung gestellt, die reale Beispiele enthält, wie man sowohl einen einfachen gleitenden Durchschnitt als auch einen exponentiellen gleitenden Durchschnitt berechnet. Der Unterschied zwischen EMA und SMA Nun, da Sie ein besseres Verständnis davon haben, wie die SMA und die EMA berechnet werden, können Sie sich einen Blick darauf werfen, wie sich diese Durchschnittswerte unterscheiden. Mit Blick auf die Berechnung der EMA, werden Sie feststellen, dass mehr Wert auf die jüngsten Datenpunkte gesetzt wird, so dass es eine Art von gewichteten Durchschnitt. In Abbildung 5 ist die Anzahl der in jedem Durchschnitt verwendeten Zeiträume identisch (15), aber die EMA reagiert schneller auf die sich ändernden Preise. Beachten Sie, wie die EMA einen höheren Wert hat, wenn der Preis steigt, und fällt schneller als die SMA, wenn der Preis sinkt. Diese Reaktionsfähigkeit ist der Hauptgrund, warum viele Händler es vorziehen, die EMA über die SMA zu nutzen. Was sind die verschiedenen Tage Mittleren Durchlauf-Durchschnitten sind ein völlig anpassbarer Indikator, was bedeutet, dass der Benutzer frei wählen kann, was Zeitrahmen sie beim Erstellen des Durchschnitts wollen. Die häufigsten Zeiträume, die bei gleitenden Durchschnitten verwendet werden, sind 15, 20, 30, 50, 100 und 200 Tage. Je kürzer die Zeitspanne ist, um den Durchschnitt zu schaffen, desto empfindlicher wird es Preisänderungen. Je länger die Zeitspanne, desto weniger empfindlich oder mehr geglättet wird, wird der Durchschnitt sein. Es gibt keinen richtigen Zeitrahmen, um bei der Einrichtung Ihrer gleitenden Durchschnitte zu verwenden. Der beste Weg, um herauszufinden, welche am besten für Sie arbeitet, ist, mit einer Reihe von verschiedenen Zeiträumen zu experimentieren, bis Sie eine finden, die zu Ihrer Strategie passt. Moving Averages in R Nach meinem besten Wissen hat R kein eingebautes Funktion, um gleitende Durchschnitte zu berechnen. Mit der Filterfunktion können wir jedoch eine kurze Funktion für bewegte Mittelwerte schreiben: Wir können dann die Funktion auf beliebige Daten verwenden: mav (data) oder mav (data, 11), wenn wir eine andere Anzahl von Datenpunkten angeben wollen Als der Standard 5 Plotten funktioniert wie erwartet: plot (mav (data)). Zusätzlich zu der Anzahl der Datenpunkte, über die zu durchschnittlich, können wir auch die Seiten Argument der Filterfunktionen ändern: sides2 verwendet beide Seiten, Seiten1 verwendet nur vergangene Werte. Teilen Sie diese: Post Navigation Kommentar Navigation Kommentar NavigationA Closer Blick auf die Advanced CODAS Moving Average Algorithmus Vielseitig gleitenden Durchschnitt in Advanced CODAS Algorithmus Filter Wellenform Lärm, extrahiert Mittel und eliminiert Baseline Drift. Der gleitende Durchschnitt ist eine einfache mathematische Technik, die in erster Linie zur Beseitigung von Aberrationen verwendet wird und den wirklichen Trend in einer Sammlung von Datenpunkten offenbart. Sie können mit ihm von der Mittelung der lärmenden Daten in einem Neuling-Physik-Experiment oder von der Verfolgung der Wert einer Investition vertraut sein. Sie wissen vielleicht nicht, dass der gleitende Durchschnitt auch ein Prototyp des Finite-Impulse-Response-Filters ist, der häufigste Filtertyp, der in der computergestützten Instrumentierung verwendet wird. In Fällen, in denen eine gegebene Wellenform mit Rauschen übereinstimmt, wo ein Mittel aus einem periodischen Signal extrahiert werden muss oder wo eine langsam abtreibende Grundlinie aus einem höheren Frequenzsignal eliminiert werden muss, kann ein gleitender Durchschnittsfilter angewendet werden, um das gewünschte zu erreichen Ergebnis. Der gleitende durchschnittliche Algorithmus von Advanced CODAS bietet diese Art von Wellenform-Filterleistung. Advanced CODAS ist ein Analyse-Softwarepaket, das auf vorhandenen Wellenform-Datendateien arbeitet, die von WinDaq oder WinDaq Datenerfassungspaketen der ersten Generation erstellt wurden. Zusätzlich zu dem gleitenden durchschnittlichen Algorithmus enthält Advanced CODAS auch einen Reportgenerator-Dienstprogramm und Software-Routinen für die Wellenformintegration, Differenzierung, Peak - und Tal-Erfassung, Rektifikation und arithmetische Operationen. Moving Average Filter Theory DATAQ Instruments Gleitende durchschnittliche Algorithmus ermöglicht viel Flexibilität in Wellenform-Filter Anwendungen. Es kann als Tiefpaßfilter verwendet werden, um das Rauschen zu dämpfen, das bei vielen Arten von Wellenformen oder als Hochpassfilter enthalten ist, um eine Drift-Grundlinie aus einem höheren Frequenzsignal zu eliminieren. Die Prozedur, die von dem Algorithmus verwendet wird, um die Menge der Filterung zu bestimmen, beinhaltet die Verwendung eines Glättungsfaktors. Dieser Glättungsfaktor, der von Ihnen durch die Software gesteuert wird, kann erhöht oder verringert werden, um die Anzahl der tatsächlichen Wellenformdatenpunkte oder Proben anzugeben, die der gleitende Durchschnitt überspannen wird. Jede periodische Wellenform kann als eine lange Zeichenfolge oder Sammlung von Datenpunkten gedacht werden. Der Algorithmus führt einen gleitenden Durchschnitt durch, indem er zwei oder mehr dieser Datenpunkte aus der erfassten Wellenform nimmt, indem er sie addiert, ihre Summe durch die Gesamtzahl der hinzugefügten Datenpunkte dividiert und den ersten Datenpunkt der Wellenform durch den gerade berechneten Durchschnitt ersetzt und Wiederholen der Schritte mit dem zweiten, dritten und so weiter Datenpunkt bis zum Ende der Daten erreicht ist. Das Ergebnis ist eine zweite oder erzeugte Wellenform, die aus den gemittelten Daten besteht und die gleiche Anzahl von Punkten wie die ursprüngliche Wellenform aufweist. Abbildung 1 8212 Jede periodische Wellenform kann als eine lange Zeichenfolge oder Sammlung von Datenpunkten gedacht werden. In der obigen Darstellung werden aufeinanderfolgende Wellenformdatenpunkte durch quanten dargestellt, um zu veranschaulichen, wie der gleitende Durchschnitt berechnet wird. In diesem Fall wurde ein Glättungsfaktor von drei angewendet, was bedeutet, dass drei aufeinanderfolgende Datenpunkte aus der ursprünglichen Wellenform addiert werden, wobei ihre Summe durch drei dividiert wird, und dann wird dieser Quotient als der erste Datenpunkt einer erzeugten Wellenform aufgetragen. Der Prozeß wiederholt sich mit dem zweiten, dritten und so weiter Datenpunkt der ursprünglichen Wellenform, bis das Ende der Daten erreicht ist. Eine spezielle Quittungsquot-Technik vermittelt die Anfangs - und Enddatenpunkte der ursprünglichen Wellenform, um sicherzustellen, dass die erzeugte Wellenform die gleiche Anzahl von Datenpunkten wie das Original enthält. Fig. 1 veranschaulicht, wie der gleitende Durchschnittsalgorithmus an Wellenformdatenpunkte angelegt wird (die durch y dargestellt sind). Die Darstellung zeigt einen Glättungsfaktor von 3, was bedeutet, dass der Mittelwert (dargestellt durch a) über 3 aufeinanderfolgende Wellenformdatenwerte berechnet wird. Beachten Sie die Überschneidung, die in den gleitenden Durchschnittsberechnungen existiert. Es ist diese überlappende Technik, zusammen mit einer speziellen Anfangs - und Endpunktbehandlung, die die gleiche Anzahl von Datenpunkten in der gemittelten Wellenform erzeugt, wie sie im Original existiert. Die Art und Weise, wie der Algorithmus einen gleitenden Durchschnitt berechnet, verdient einen genaueren Blick und kann mit einem Beispiel illustriert werden. Sagen wir, dass wir für zwei Wochen auf einer Diät waren und wir wollen unser durchschnittliches Gewicht in den letzten 7 Tagen berechnen. Wir würden unser Gewicht am 7. Tag mit unserem Gewicht an den Tagen 8, 9, 10, 11, 12 und 13 summieren und dann mit 17 multiplizieren. Um das Verfahren zu formalisieren, kann dies ausgedrückt werden als: a (7) 17 (y ( 7) y (8) y (9) y (13)) Diese Gleichung kann weiter verallgemeinert werden. Der gleitende Mittelwert einer Wellenform kann berechnet werden durch: Wo: ein gemittelter Wert n Datenpunktposition s Glättungsfaktor y aktueller Datenpunktwert Abbildung 2 8212 Die Wägezellenausgangswellenform, die ursprünglich und ungefiltert im oberen Kanal und als 11-Punkt dargestellt ist Bewegte gemittelte Wellenform im unteren Kanal. Das Rauschen, das auf der ursprünglichen Wellenform auftritt, war auf die intensiven Vibrationen zurückzuführen, die durch die Presse während des Verpackungsvorgangs erzeugt wurden. Der Schlüssel zu dieser Algorithmen Flexibilität ist seine breite Palette von wählbaren Glättungsfaktoren (von 2 - 1.000). Der Glättungsfaktor bestimmt, wie viele aktuelle Datenpunkte oder Samples gemittelt werden. Die Angabe eines positiven Glättungsfaktors simuliert ein Tiefpaßfilter bei der Angabe eines negativen Glättungsfaktors simuliert einen Hochpassfilter. Angesichts des absoluten Wertes des Glättungsfaktors gelten höhere Werte für die resultierende Wellenform mit größeren Glättungsbeschränkungen und umgekehrt gelten niedrigere Werte weniger Glättung. Mit der Anwendung des richtigen Glättungsfaktors kann der Algorithmus auch verwendet werden, um den Mittelwert einer gegebenen periodischen Wellenform zu extrahieren. Ein höherer positiver Glättungsfaktor wird typischerweise angewendet, um mittlere Wellenformwerte zu erzeugen. Anwenden des Moving Average Algorithmus Ein markantes Merkmal des gleitenden Durchschnittsalgorithmus ist, dass es viele Male auf die gleiche Wellenform angewendet werden kann, wenn nötig, um das gewünschte Filterergebnis zu erhalten. Wellenformfilterung ist eine sehr subjektive Übung. Was kann eine ordnungsgemäß gefilterte Wellenform zu einem Benutzer sein, kann inakzeptabel laut zu einem anderen sein. Nur Sie können beurteilen, ob die Anzahl der gemittelten Punkte zu hoch war, zu niedrig oder genau richtig. Die Flexibilität des Algorithmus ermöglicht es Ihnen, den Glättungsfaktor anzupassen und einen weiteren Durchlauf durch den Algorithmus zu machen, wenn zufriedenstellende Ergebnisse nicht mit dem anfänglichen Versuch erreicht werden. Die Anwendung und die Fähigkeiten des gleitenden Durchschnittsalgorithmus können am besten durch die folgenden Beispiele veranschaulicht werden. Abbildung 3 8212 Die EKG-Wellenform, die in der obersten Leitung und in einer 97-Punkt-geführten gemittelten Wellenform im unteren Kanal dargestellt und ungefiltert ist. Beachten Sie die Abwesenheit von Baseline Drift im unteren Kanal. Beide Wellenformen werden in einer komprimierten Bedingung für Präsentationszwecke gezeigt. Eine Rauschunterdrückungsanwendung In Fällen, in denen eine gegebene Wellenform mit Rauschen überladen ist, kann das gleitende Durchschnittsfilter angelegt werden, um das Rauschen zu unterdrücken und ein klareres Bild der Wellenform zu ergeben. Zum Beispiel benutzte ein Advanced CODAS-Kunde eine Presse und eine Wägezelle in einem Verpackungsbetrieb. Ihr Produkt sollte auf ein vorbestimmtes Niveau (überwacht durch die Wägezelle) komprimiert werden, um die Größe der Verpackung zu reduzieren, die erforderlich ist, um das Produkt zu enthalten. Aus Gründen der Qualitätskontrolle haben sie sich entschlossen, den Pressvorgang mit Instrumentierung zu überwachen. Ein unerwartetes Problem erschien, als sie anfingen, die Echtzeit-Wägezellenausgabe zu betrachten. Da die Pressenmaschine während des Betriebs beträchtlich schwankte, war die Wellenform der Wägezellen schwierig zu erkennen, da sie eine große Menge an Rauschen aufgrund der Vibration enthielt, wie in dem oberen Kanal von Fig. 2 gezeigt. Dieses Rauschen wurde eliminiert, indem ein 11-Punkt-gewebter gemittelter Kanal erzeugt wurde, wie in dem unteren Kanal von 2 gezeigt. Das Ergebnis war ein viel klareres Bild der Wägezellenausgabe. Eine Anwendung bei der Beseitigung von Baseline Drift In Fällen, in denen eine langsam treibende Grundlinie aus einem höheren Frequenzsignal entfernt werden muss, kann der gleitende Durchschnittsfilter angewendet werden, um die Driftbasislinie zu eliminieren. Zum Beispiel zeigt eine EKG-Wellenform typischerweise einen gewissen Grad an Baseline-Wanderung, wie in dem oberen Kanal von 3 zu sehen ist. Diese Baseline-Drift kann eliminiert werden, ohne die Eigenschaften der Wellenform zu verändern oder zu stören, wie in dem unteren Kanal von Fig. 3 gezeigt ist. Dies wird erreicht, indem ein geeigneter negativer Glättungsfaktor während der gleitenden Durchschnittsberechnung angewendet wird. Der entsprechende Glättungsfaktor wird durch Dividieren einer Wellenformperiode (in Sekunden) durch das Kanalabtastintervall bestimmt. Die Kanäle Probenintervall ist einfach der Kehrwert der Kanäle Abtastrate und wird bequem in der gleitenden durchschnittlichen Utility-Menü angezeigt. Die Wellenformperiode wird leicht aus dem Anzeigeschirm bestimmt, indem der Cursor an einem geeigneten Punkt auf der Wellenform positioniert wird, eine Zeitmarkierung eingestellt wird und dann der Cursor einen vollständigen Zyklus von der angezeigten Zeitmarke weg bewegt wird. Die Zeitdifferenz zwischen Cursor und Zeitmarke ist eine Wellenformperiode und wird am unteren Rand des Bildschirms in Sekunden angezeigt. In unserem EKG-Beispiel besaß die Wellenform ein Kanalabtastintervall von 0,004 Sekunden (erhalten aus dem gleitenden Mittelnutzungsmenü) und eine Wellenformperiode wurde gemessen, um 0,388 Sekunden zu überspannen. Die Teilung der Wellenformperiode durch die Kanalsample-Intervall ergab uns einen Glättungsfaktor von 97. Da es sich um die Baseline-Drift handelt, die wir an der Eliminierung interessieren, haben wir einen negativen Glättungsfaktor (-97) auf den gleitenden Durchschnittsalgorithmus angewendet. Dies beeinflusste in der Tat das gleitende gemittelte Ergebnis aus dem ursprünglichen Wellenformsignal, das die Grundliniendrift ohne störende Wellenforminformation eliminierte. Andere Waveform Moving Average Issues Unabhängig von der Anwendung, ist der universelle Grund für die Anwendung eines gleitenden durchschnittlichen Filters auf quotsmooth outquot die hohen und niedrigen Aberrationen und zeigen eine repräsentativere Zwischenwellenform Wert. Wenn dies geschieht, sollte die Software keine anderen Merkmale der ursprünglichen Wellenform in dem Prozess der Erzeugung einer gleitenden gemittelten Wellenform kompromittieren. Beispielsweise sollte die Software automatisch die Kalibrierungsinformation, die mit der ursprünglichen Datendatei verknüpft ist, anpassen, so dass die gleitende gemittelte Wellenform in den entsprechenden technischen Einheiten liegt, wenn sie erzeugt werden. Alle Messwerte in den Figuren wurden mit WinDaq Data Acquisition Software durchgeführt. Durchführungsdurchschnitte Verschieben von Durchschnittswerten Bei herkömmlichen Datensätzen ist der Mittelwert oft der erste und eine der nützlichsten Zusammenfassungsstatistiken zu berechnen. Wenn Daten in Form einer Zeitreihe vorliegen, ist das Serienmittel ein nützliches Maß, entspricht aber nicht der Dynamik der Daten. Mittelwerte, die über kurzgeschlossene Perioden berechnet werden, die entweder der aktuellen Periode vorausgeht oder auf der aktuellen Periode zentriert sind, sind oft nützlicher. Weil diese Mittelwerte variieren oder sich bewegen, wenn sich die aktuelle Periode von der Zeit t 2, t 3 usw. bewegt, werden sie als gleitende Mittelwerte (Mas) bezeichnet. Ein einfacher gleitender Durchschnitt ist (typischerweise) der ungewichtete Durchschnitt von k vorherigen Werten. Ein exponentiell gewichteter gleitender Durchschnitt ist im Wesentlichen derselbe wie ein einfacher gleitender Durchschnitt, aber mit Beiträgen zum Mittelwert, der durch ihre Nähe zur aktuellen Zeit gewichtet wird. Weil es nicht eine, sondern eine ganze Reihe von gleitenden Durchschnitten für jede gegebene Serie gibt, kann der Satz von Mas selbst auf Graphen aufgetragen, als Serie analysiert und bei der Modellierung und Prognose verwendet werden. Eine Reihe von Modellen kann mit gleitenden Durchschnitten konstruiert werden, und diese sind als MA-Modelle bekannt. Wenn solche Modelle mit autoregressiven (AR) Modellen kombiniert werden, sind die resultierenden zusammengesetzten Modelle als ARMA - oder ARIMA-Modelle bekannt (die I ist für integriert). Einfache Bewegungsdurchschnitte Da eine Zeitreihe als ein Satz von Werten betrachtet werden kann, kann t 1,2,3,4, n der Mittelwert dieser Werte berechnet werden. Wenn wir annehmen, daß n ziemlich groß ist und wir eine ganze Zahl k wählen, die viel kleiner als n ist. Wir können einen Satz von Blockdurchschnitten oder einfache gleitende Mittelwerte (der Ordnung k) berechnen: Jede Maßnahme repräsentiert den Mittelwert der Datenwerte über ein Intervall von k Beobachtungen. Beachten Sie, dass die erste mögliche MA der Ordnung k gt0 die für t k ist. Im Allgemeinen können wir den zusätzlichen Index in den obigen Ausdrücken fallen lassen und schreiben: Dies besagt, dass der geschätzte Mittelwert zum Zeitpunkt t der einfache Durchschnitt des beobachteten Wertes zum Zeitpunkt t und der vorhergehenden k -1 Zeitschritte ist. Wenn Gewichte angewendet werden, die den Beitrag von Beobachtungen, die weiter weg in der Zeit sind, verringern, wird der gleitende Durchschnitt exponentiell geglättet. Bewegliche Mittelwerte werden oft als eine Form der Prognose verwendet, wobei der Schätzwert für eine Reihe zum Zeitpunkt t 1, S t1. Wird als MA für den Zeitraum bis einschließlich Zeit t genommen. z. B. Die heutige Schätzung basiert auf einem Durchschnitt der bisher aufgezeichneten Werte bis einschließlich gestern (für Tagesdaten). Einfache gleitende Durchschnitte können als eine Form der Glättung gesehen werden. In dem unten dargestellten Beispiel wurde der in der Einleitung zu diesem Thema gezeigte Luftverschmutzungs-Datensatz um eine 7-Tage-Gleitende Durchschnitt (MA) - Linie erweitert, die hier in rot dargestellt ist. Wie man sehen kann, glättet die MA-Linie die Gipfel und Tröge in den Daten und kann sehr hilfreich bei der Identifizierung von Trends sein. Die Standard-Vorwärtsberechnungsformel bedeutet, dass die ersten k -1 Datenpunkte keinen MA-Wert haben, aber danach rechnen die Berechnungen bis zum endgültigen Datenpunkt in der Serie. PM10 tägliche Mittelwerte, Greenwich Quelle: London Air Quality Network, londonair. org. uk Ein Grund für die Berechnung einfacher gleitender Durchschnitte in der beschriebenen Weise ist, dass es ermöglicht, Werte für alle Zeitschlitze von der Zeit tk bis zur Gegenwart berechnet werden, und Da eine neue Messung für die Zeit t 1 erhalten wird, kann die MA für die Zeit t 1 dem bereits berechneten Satz hinzugefügt werden. Dies stellt eine einfache Prozedur für dynamische Datensätze zur Verfügung. Allerdings gibt es einige Probleme mit diesem Ansatz. Es ist vernünftig zu argumentieren, dass der Mittelwert über die letzten 3 Perioden, sagen wir, zum Zeitpunkt t -1 liegen sollte, nicht Zeit t. Und für eine MA über eine gerade Anzahl von Perioden vielleicht sollte es sich am Mittelpunkt zwischen zwei Zeitintervallen befinden. Eine Lösung für dieses Problem ist die Verwendung von zentrierten MA-Berechnungen, bei denen das MA zum Zeitpunkt t der Mittelwert eines symmetrischen Satzes von Werten um t ist. Trotz seiner offensichtlichen Verdienste wird dieser Ansatz im Allgemeinen nicht verwendet, weil es erfordert, dass Daten für zukünftige Ereignisse verfügbar sind, was möglicherweise nicht der Fall ist. In Fällen, in denen die Analyse vollständig aus einer bestehenden Serie besteht, kann die Verwendung von zentriertem Mas vorzuziehen sein. Einfache gleitende Durchschnitte können als eine Form der Glättung betrachtet werden, wobei einige hochfrequente Komponenten einer Zeitreihe entfernt werden und die Trends in ähnlicher Weise wie der allgemeine Begriff der digitalen Filterung hervorgehoben werden (aber nicht entfernen) werden. In der Tat sind gleitende Mittelwerte eine Form des linearen Filters. Es ist möglich, eine gleitende Durchschnittsberechnung auf eine Reihe anzuwenden, die bereits geglättet worden ist, d. h. Glätten oder Filtern einer bereits geglätteten Reihe. Zum Beispiel können wir mit einem gleitenden Durchschnitt von Ordnung 2, wie sie mit Gewichten berechnet werden, also die MA bei x 2 0,5 x 1 0,5 x 2 betrachten. Ebenso ist die MA bei x 3 0,5 x 2 0,5 x 3. Wenn wir Eine zweite Glättung oder Filterung anwenden, haben wir 0,5 x 2 0,5 x 3 0,5 (0,5 x 1 0,5 x 2) 0,5 (0,5 x 2 0,5 x 3) 0,25 x 1 0,5 x 2 0,25 x 3 dh die zweistufige Filterung Prozess (oder Faltung) hat einen variabel gewichteten symmetrischen gleitenden Durchschnitt mit Gewichten erzeugt. Mehrere Windungen können sehr komplexe gewichtete Bewegungsdurchschnitte erzeugen, von denen einige von besonderem Gebrauch in spezialisierten Bereichen, wie in Lebensversicherungsberechnungen, gefunden wurden. Bewegliche Mittelwerte können verwendet werden, um periodische Effekte zu entfernen, wenn sie mit der Länge der Periodizität als bekannt berechnet werden. Zum Beispiel, mit monatlichen Daten saisonale Variationen können oft entfernt werden (wenn dies das Ziel ist), indem Sie einen symmetrischen 12-Monats-gleitenden Durchschnitt mit allen Monaten gleich gewichtet, mit Ausnahme der ersten und letzten, die mit 12 gewichtet werden. Dies ist, weil es wird 13 Monate im symmetrischen Modell (aktuelle Zeit, t. - 6 Monate). Die Summe wird durch 12 geteilt. Ähnliche Verfahren können für jede klar definierte Periodizität angenommen werden. Exponentiell gewichtete Bewegungsdurchschnitte (EWMA) Mit der einfachen gleitenden Durchschnittsformel: Alle Beobachtungen werden gleich gewichtet. Wenn wir diese gleichen Gewichte nennen, alpha t. Jedes der k Gewichte würde 1 k betragen. So wäre die Summe der Gewichte 1, und die Formel wäre: Wir haben bereits gesehen, dass mehrere Anwendungen dieses Prozesses dazu führen, dass die Gewichte variieren. Bei exponentiell gewichteten Bewegungsdurchschnitten wird der Beitrag zum Mittelwert aus Beobachtungen, die in der Zeit mehr entfernt werden, reduziert und damit neue (lokale) Ereignisse hervorgehoben. Im wesentlichen wird ein Glättungsparameter, 0lt alpha lt1, eingeführt und die Formel überarbeitet: Eine symmetrische Version dieser Formel wäre von der Form: Werden die Gewichte im symmetrischen Modell als Begriffe der Binomialexpansion ausgewählt, (1212) 2q. Sie werden auf 1 summieren, und wenn q groß wird, wird die Normalverteilung angenähert. Dies ist eine Form der Kernel-Gewichtung, wobei die Binomie als Kernfunktion fungiert. Die im vorigen Unterabschnitt beschriebene zweistufige Faltung ist genau diese Anordnung, wobei q 1 die Gewichte ergibt. Bei der exponentiellen Glättung ist es notwendig, einen Satz von Gewichten zu verwenden, die auf 1 summieren und die Größe geometrisch verkleinern. Die verwendeten Gewichte sind typischerweise in der Form: Um zu zeigen, dass diese Gewichte auf 1 summieren, betrachten wir die Ausdehnung von 1 als Reihe. Wir können den Ausdruck in Klammern mit der Binomialformel (1- x) p schreiben und erweitern. Wobei x (1-) und p -1, was ergibt: Dies ergibt dann eine Form des gewichteten gleitenden Durchschnitts der Form: Diese Summation kann als eine Wiederholungsrelation geschrieben werden, die die Berechnung stark vereinfacht und das Problem vermeidet, dass das Gewichtungsregime Sollte strikt unendlich sein, damit die Gewichte auf 1 summieren (für kleine Werte von alpha ist dies normalerweise nicht der Fall). Die Notation, die von verschiedenen Autoren verwendet wird, variiert. Manche verwenden den Buchstaben S, um anzuzeigen, daß die Formel im wesentlichen eine geglättete Variable ist und schreibt: Während die Kontrolle Theorie Literatur oft Z anstelle von S für die exponentiell gewichteten oder geglätteten Werte verwendet (siehe z. B. Lucas und Saccucci, 1990, LUC1 , Und die NIST-Website für weitere Details und bearbeitete Beispiele). Die oben zitierten Formeln stammen aus der Arbeit von Roberts (1959, ROB1), aber Hunter (1986, HUN1) verwendet einen Ausdruck der Form: die für die Verwendung in einigen Kontrollverfahren besser geeignet ist. Bei alpha 1 ist die mittlere Schätzung einfach der gemessene Wert (oder der Wert des vorherigen Datenelementes). Mit 0,5 ist die Schätzung der einfache gleitende Durchschnitt der aktuellen und früheren Messungen. Bei der Vorhersage der Modelle ist der Wert S t. Wird oft als Schätz - oder Prognosewert für den nächsten Zeitraum verwendet, dh als Schätzung für x zum Zeitpunkt t 1. Damit haben wir: Dies zeigt, dass der Prognosewert zum Zeitpunkt t 1 eine Kombination aus dem vorherigen exponentiell gewichteten gleitenden Durchschnitt ist Plus eine Komponente, die den gewichteten Vorhersagefehler darstellt, epsilon. Zum Zeitpunkt t. Unter der Annahme, dass eine Zeitreihe gegeben ist und eine Prognose erforderlich ist, ist ein Wert für Alpha erforderlich. Dies kann aus den vorhandenen Daten abgeschätzt werden, indem die Summe der quadratischen Vorhersagefehler mit variierenden Werten von alpha für jedes t 2,3 ausgewertet wird. Einstellung der ersten Schätzung als der erste beobachtete Datenwert x 1. Bei den Steuerungsanwendungen ist der Wert von alpha wichtig, der bei der Bestimmung der oberen und unteren Kontrollgrenzen verwendet wird und die erwartete durchschnittliche Lauflänge (ARL) beeinflusst Bevor diese Kontrollgrenzen kaputt sind (unter der Annahme, dass die Zeitreihe einen Satz von zufälligen, identisch verteilten unabhängigen Variablen mit gemeinsamer Varianz darstellt). Unter diesen Umständen ist die Varianz der Kontrollstatistik: (Lucas und Saccucci, 1990): Kontrollgrenzen werden gewöhnlich als feste Vielfache dieser asymptotischen Varianz gesetzt, z. B. - 3 mal die Standardabweichung. Wenn beispielsweise Alpha 0,25 und die zu überwachenden Daten eine Normalverteilung N (0,1) haben, wenn die Kontrolle begrenzt wird, werden die Regelgrenzen - 1.134 sein und der Prozeß erreicht eine oder andere Grenze in 500 Schritten im Durchschnitt. Lucas und Saccucci (1990 LUC1) leiten die ARLs für eine breite Palette von Alpha-Werten und unter verschiedenen Annahmen mit Markov Chain Verfahren ab. Sie tabellieren die Ergebnisse, einschließlich der Bereitstellung von ARLs, wenn der Mittelwert des Kontrollprozesses um ein Vielfaches der Standardabweichung verschoben wurde. Zum Beispiel ist bei einer 0,5-Schicht mit alpha 0,25 die ARL weniger als 50 Zeitschritte. Die oben beschriebenen Ansätze werden als einzelne exponentielle Glättung bezeichnet. Da die Prozeduren einmal auf die Zeitreihen angewendet werden und dann analysiert oder kontrolliert werden, werden Prozesse auf dem resultierenden geglätteten Datensatz durchgeführt. Wenn der Datensatz einen Trend und saisonale Komponenten enthält, kann eine zweidimensionale oder dreistufige Exponentialglättung als Mittel zur Beseitigung (expliziten Modellierung) dieser Effekte angewendet werden (siehe weiter unten den Abschnitt "Vorhersage" und das NIST-Beispiel). CHA1 Chatfield C (1975) Die Analyse der Times-Serie: Theorie und Praxis. Chapman und Hall, London HUN1 Hunter J S (1986) Der exponentiell gewichtete gleitende Durchschnitt. J von Quality Technology, 18, 203-210 LUC1 Lucas J M, Saccucci M S (1990) Exponentiell gewichtete Moving Average Control Schemes: Eigenschaften und Erweiterungen. Technometrics, 32 (1), 1-12 ROB1 Roberts S W (1959) Kontrolltabelle Tests basierend auf geometrischen Moving Averages. Technometrics, 1, 239-250


No comments:

Post a Comment